
www.manaraa.com

First published in the Ada-Europe ’95 Conference Proceedings, Frankfurt, Germany, October 2-6, 1995

ABSTRACT. The implementation of ADTs for homo-

geneous data structures has become a classic exam-

ple of ADT in Ada 83. With some effort, it was also

possible to implement a restricted form of heteroge-

neous data structures, based on variant records. We

show that various approaches in implementing flexi-

ble heterogeneous data structures with Ada 95 are

now possible. One of these approaches is generalized

to create heterogeneous catalogues of cross-refer-

enced objects, thus implementing one kind of multi-

ple classification.

KEYWORDS. Abstract Data Types, Ada 95, Hetero-

geneous Collections, Classification, Catalogues.

1. INTRODUCTION

It has long been known how to implement vari-

ous homogeneous data structures with Ada 83 (e.g.

stacks of integers, or lists of characters). However, it

is sometimes necessary to collect polymorphic items

in one data structure, i.e. in a heterogeneous con-

tainer ADT. Since each object in Ada has one spe-

cific type, the question is then how to build a

collection of objects which do not all have the same

specific type, while remaining within the frame of

Ada’s strong typing.

In other words, is it possible to create dynamic

data structures with elements of various kinds in

Ada? This paper demonstrates how, using Ada 83

mechanisms only [1], this could be done with some

difficulty and much inflexibility, and then goes on to

show several alternative and flexible approaches

using new Ada 95 constructs [2].

First, we show how to use variant records, i.e.

record types with discriminants.

Second, we explain how tagged types, class-wide

access types, and genericity can be used.

Third, we describe an alternative design using

tagged types and class-wide access types, but no

genericity, to create a type-extensible framework.

Finally we develop an extremely versatile tech-

nique, based on self-referential types (with access

discriminants). This technique has the additional

benefit of offering a straightforward approach for

cross-referencing catalogues or, in more general

terms, for multiple classification.

This tour of techniques for implementing hetero-

geneous data structures in Ada 95 shows that the

revised definition of the language provides a set of

extremely powerful constructs, and that this set is

more than adequate to solve many advanced design

and coding problems.

2. VARIANT RECORDS

The programmer can apply a technique to imple-

ment heterogeneous data structures simply with

the constructs offered by Ada 83, namely with vari-

ant records. This technique requires both the decla-

ration of an enumeration type which lists the

different kinds of items to be dealt with, and the

declaration of a record type with a discriminant of

the enumerated type such that each variant in the

record type corresponds to the representation of one

kind of item.

For instance, considering a very simple case in

which one would like to implement a list mixing

integers with characters, one could write the follow-

ing declarations (for presentation purpose, we

choose to present a simple array and ignore issues

of information hiding):

type Kind_Typeis
-- two kinds of items: integers and characters

(K_Integer, K_Character, K_Null);

Heterogeneous Data Structures
and Cross-Classification of Objects with Ada 95

Magnus Kempe

Swiss Federal Institute of Technology in Lausanne
Software Engineering Laboratory

EPFL–DI–LGL
CH–1015 Lausanne, Switzerland

e-mail: Magnus.Kempe @ di.epfl.ch

This paper was first published in the Ada-Europe ’95 Conference Proceedings (Springer-Verlag).



www.manaraa.com

Heterogeneous Data Structures and Cross-Classification of Objects with Ada 95 Page 2

type Item_Type (Kind : Kind_Type := K_Null)is
record -- default: no value, no kind

case Kind is
when K_Integer

=> I : Integer;
when K_Character

=> C : Character;
when K_Null -- default variant: undefined value

=> null;
end case;

end record;

type Bounded_Array_Typeis
array (Positiverange <>) of

Item_Type;

Figure 1. Heterogeneous array, with variant records.

With such declarations, one could also instanti-

ate e.g. a generic list ADT:

generic
type Item_Typeis private;

package Lists_Gis
type List_Typeis limited private;
procedure Insert_Front

(X : in Item_Type;
 L : in out List_Type);

...
end Lists_G;

package List is
new Lists_G (Item_Type);

Figure 2. Heterogeneous list, with variant records as item
type.

Note that the generic list ADT is not, and need

not be, specially designed for use as a heteroge-

neous data structure. It is simply the same as what

used to be seen as a homogeneous list in Ada 83.

Unfortunately, this technique has several draw-

backs.

First, each time one wants to add a new kind of

item, one has to update the type Kind_Type and

then propagate the change to the variant record

type Item_Type as well as to the case statements

likely to appear in the code to distinguish between

kinds of items. Such modifications are not always

possible or desirable. For instance, it would be bet-

ter if we could avoid changing existing code, since

there would be no consequent need to recompile it

and everything that depends on it.

Second, the use of variant records is not neces-

sarily space-efficient, since the compiler is likely to

systematically reserve as much space as needed for

the largest variant. Depending on the differences in

size between variants, this may turn out to be a

heavy penalty to pay in terms of memory usage.

If an access type is declared, it is possible to

directly use this access type to instantiate the

required (Ada83-style) ADT, with better average

use of memory as a consequence (but with addi-

tional headaches due to memory management):

type Reference_Typeis
access Item_Type;

package List is
new Lists_G (Reference_Type);

Figure 3. Heterogeneous list, with access to variant records
as item type.

3. TAGGED TYPES AND CLASS-WIDE ACCESS
TYPES

With the advent of tagged types in Ada 95, a new

kind of access types has also been introduced: class-

wide access types. A class-wide access type is associ-

ated to the root of a hierarchy of tagged types (i.e.

the root of an inheritance tree), and its values may

designate objects of any specific type within that

hierarchy.

Figure 4. “T’Class” as covering a hierarchy of specific types;
contrast between “access T” and “access T’class”.

In figure 4, we show with dashed lines that,

given an inheritance hierarchy with two types (NT

and OT) derived from a root type T, the class-wide

type T’Class covers values of all three specific types

and a class-wide access type (“access T’Class”)

would cover values like those of specific access types

(e.g. “access T”).

This leads to a simple solution in order to imple-

ment heterogeneous data structures: create a hier-

archy of tagged types, each one corresponding to a

separate kind of items to be handled, and work with

a related class-wide access type. This creates a con-

strained heterogeneous data structure, because only

items belonging to a given class are allowed in the

structure. The tag of each item corresponds exactly

to the discriminant of the first example.

A combination of the examples shown in figures

1 and 2 and a translation to use tagged types and

class-wide access gives:

type Item_Typeis -- parent of all kinds of items
abstract tagged null record;

type Integer_Typeis -- first kind: integers
new Item_Type
with record

I : Integer;
end record;

NT OT

T

T’Class

access Taccess T’Class

access OT



www.manaraa.com

Heterogeneous Data Structures and Cross-Classification of Objects with Ada 95 Page 3

type Character_Typeis -- second kind: characters
new Item_Type
with record

C : Character;
end record;

type Reference_Typeis -- access any kind
access Item_Type’Class;

type Bounded_Array_Typeis
array (Positiverange <>) of

Reference_Type;

Figure 5. Heterogeneous array, with class-wide access as
item type.

Again, the access type can be passed directly to

the required generic list ADT. The values stored in

the ADT are access values to objects within the

Item_Type’Class hierarchy of types:

package List is
new Lists_G (Reference_Type);

Figure 6. Heterogeneous list, with class-wide access as
item type.

An obvious advantage of this technique is that it

is possible to declare new types within the hierar-

chy without any changes to the declarations already

shown. A noteworthy difference and potential

advantage is that the kinds of items are not linearly

enumerated but can be organized in a hierarchy of

kinds, if a taxonomy is needed.

In addition, the space requirements are strictly

related to the actual type of each item stored in the

container. This is a direct consequence of the level of

indirection introduced by the class-wide access type

which is used.

Most object-oriented programming languages do

in fact automatically create a level of indirection to

represent objects, which explains why many also

offer heterogeneous data structures by default.

Ada’s advantage in this context is that the program-

mer is free to decide whether he wants a homoge-

neous or a heterogeneous data structure, and then

the language enforces that decision.1

It is possible to design a new breed of container

ADTs, one which is specifically tuned to working

with heterogeneous collections implemented in the

form of hierarchies of tagged types.

We present for instance the specification of a

generic heterogeneous stack ADT, which, given

some tagged type T used as an actual parameter to

instantiate the ADT, will store and return objects of

any type in the class rooted at T (i.e. in T’Class):

1. To some, this may be seen as a drawback, since the programmer
is required to decide which to use...

generic
type Item_Typeis

tagged private;

package Heterogeneous_Stacks_Gis
type Stack_Typeis

private;

procedure Push
(X : in Item_Type’Class;
 S :in out Stack_Type);

function Top (S : Stack_Type)
return Item_Type’Class;

procedure Pop
(S : in out Stack_Type);

private
type Reference_Typeis

access Item_Type’Class;
...

end Heterogeneous_Stacks_G;

Figure 7. Explicitly heterogeneous stack ADT.

4. TYPE EXTENSION FRAMEWORK

A different technique relying on tagged types is

to create a framework, with a non-generic ADT

exporting a tagged type that the programmer will

extend to create the various kinds of item types he

needs.

Here is an example specification of a singly-

linked list, with just one operation profile shown,

“insert in front of the list”:

package Heterogeneous_Listsis
type Item_Typeis -- parent of all kinds of items

abstract tagged private;

type List_Typeis
limited private;

procedure Insert_Front
(X : in Item_Type’Class;
 L : in out List_Type);

...
private

type List_Typeis
access Item_Type’Class;

type Item_Typeis
abstract tagged
record

Next : List_Type;
end record;

end Heterogeneous_Lists;

Figure 8. Explicitly heterogeneous singly-linked list ADT.

This technique is quite unusual for someone who

is accustomed to working with generic ADTs written

in Ada 83, but it is not an unusual OO program-

ming technique. Here, the client programmer is

able to define the kind of items to store in the list by



www.manaraa.com

Heterogeneous Data Structures and Cross-Classification of Objects with Ada 95 Page 4

externally deriving a new type from Item_Type (and

defining appropriate additional components and/or

operations):

type Integer_Item_Typeis
new Heterogeneous_Lists.Item_Type
with record

I : Integer;
end record;

Figure 9. A new kind of items for the heterogeneous list.

As in section 3, since new types may be created

by extending Item_Type to create a hierarchy of

types rooted at Item_Type, the list data structure

implemented above is heterogeneous in a con-

strained but open-ended fashion. It is not “arbi-

trarily” heterogeneous in the Smalltalk way [5].

There is no apparent advantage or disadvantage

in using this version, except for a potential obstacle:

an existing inheritance hierarchy would have to be

modified at the root to derive from the ADT’s

Item_Type; the problem comes from trying to use

inheritance to achieve multiple, distinct goals.

The raw interface to Item_Type is very limited,

but it is possible to get to the properties of the

derived types either by declaring a root user type

derived from Item_Type, with dispatching to sub-

programs common to all kinds of items to be

defined, or by using the membership test operator

“in” and type conversions with run-time checks.

One difference with the technique presented in

section 3 is that genericity is not used here, but

exclusively type extension and a class-wide access

type. This may be taken as yet another illustration

of the extreme flexibility inherent in both the mech-

anisms of genericity and inheritance.

5. SELF-REFERENTIAL TYPES

There is yet another technique for the implemen-

tation of heterogeneous data structures, based on

self-referential types (with access discriminants).

The construction is similar in spirit to one used

by [6] in order to automatically collect all instances

of a given type. An object which should be contained

in some ADT has a component of type

Hook_to_ADT, and that component has an access

discriminant designating the enclosing object—thus

allowing both ADT traversal and access to the

object enclosing each node acting as a hook.

The example we will use is a representation for

heterogeneous binary trees.

type Node;
type Node_Refis access Node'Class;
type Nodeis
-- similar role to that of Item_Type in figure 8
-- (heterogeneous list ADT)

abstract tagged
limited record

Parent,
Left_Child,
Right_Child : Node_Ref;

end record;

Figure 10. Heterogeneous binary tree data structure.

The next figure shows how to add a new kind of

items given the definition of heterogeneous tree pre-

sented above:

type T;
type Hook_to_Tree (Outer :access T) is

new Node
with null record;

type T is -- T may appear in a tree
limited record

...
Tree_Hook : Hook_to_Tree (T'access);-- self-reference

end record;

Figure 11. Item type T in heterogeneous binary tree.

If T was defined as a tagged type, we could

derive a new type NT with a second hook, thus

defining a kind of item that may appear twice in a

tree or simultaneously in two trees:

type T is -- T may appear in a tree
tagged limited record
-- assume we use T’Class in access discriminant of
-- the hook

...
Tree_Hook : Hook_to_Tree (T'access);-- self-reference

end record;

type NT is
-- may appear twice in a tree, or in two separate trees

new T
with record

Second_Hook : Hook_to_Tree (NT'access);
-- second self-reference

end record;

Figure 12. Item type NT potentially twice in a tree.

Any type having a component of a hook type

(derived from Node) can thus be part of the hetero-

geneous tree structure. This provides unconstrained

and open-ended heterogeneous data structures,

without any restriction to types within an inherit-

ance hierarchy (such as the ones based directly on

class-wide access types have, as presented in sec-

tions 3 and 4). Also, note that type T need not be

tagged.

This kind of classification is different from the

usual “class” concept: objects can in their lifetime

belong to various catalogues [4]. A catalogue is a col-

lection of references to objects; the objects are



www.manaraa.com

Heterogeneous Data Structures and Cross-Classification of Objects with Ada 95 Page 5

described in the catalogue but exist independently

and remain external to it, unlike objects which are

included in and parts of a collection.

This technique is rather complex to design and

implement, but it is easy to understand and apply.

To turn it into standard practice, it is best to

abstract the structure with a generic unit; thus we

will create a “framework” that captures this “pat-

tern.”

We now demonstrate multiple classification on

the basis of mixins [3, 7] with the following specifi-

cation:

package Heterogenous_Treesis
-- same as before: pointer structure of a binary tree
type Node;
type Node_Refis access Node'Class;
type Nodeis

abstract tagged
limited record

Parent,
Left_Child,
Right_Child : Node_Ref;

end record;

-- generic “add a kind of items”
generic

type T is -- to be derived from and extended with a hook
tagged limited private;

package In_Tree_Gis
 -- a hooking node with access discriminant to
-- T’Class objects
type Hook_to_Tree (Outer :access T'Class)is

new Node
with null record;

-- a new kind of T, self-referential through a hooking
-- node component
type Tree_Tis

new T
with record

Tree_Hook : Hook_to_Tree (Tree_T'Access);
end record;

end In_Tree_G;

end Heterogenous_Trees;

Figure 13. Heterogeneous tree ADT with mixin hook.

On the first hand, this technique has the disad-

vantage that it is applicable exclusively to limited

types, since a component with an access discrimi-

nant is limited, the container type is limited too.

However, self-referential objects must be of a spe-

cific nature, viz. they must have complete by-refer-

ence semantics. To simultaneously belong to several

collections, an object has to be shared by reference,

i.e. copy semantics would violate the referential

integrity of the object; thus “limited” is necessary to

enforce the desired integrity.

On the other hand, this approach has the defi-

nite advantage that it allows us to get out of the

“constrained heterogeneous” and tagged type frame,

since any type which contains an appropriate hook

component can be added to our heterogeneous con-

tainer without interference with already existing

inheritance hierarchies. An additional advantage is

that this technique renders multiple classification

fairly easy. For instance, some items could be

defined as potentially belonging to either a list or a

tree, or to both at the same time and independently.

It is interesting to note that, where available,

multiple inheritance (MI) is often used for the pur-

pose of such multiple classification, i.e. for cases of

multiple, cross-referencing catalogues. But MI is

not necessarily the best tool, since for instance a

famous area of dispute is what “repeated inherit-

ance” should mean. By contrast, with the technique

presented in this section, an item may have as

many hook components as necessary, and the mean-

ing of each component is immediately clear. E.g. an

item containing two hooks may appear twice in a

catalogue or in two otherwise unrelated catalogues.

6. CONCLUSION

We have described solutions and options in the

implementation of heterogeneous data structures

with Ada 95. The initial design and implementation

may seem complex, but understanding and applying

the techniques developed here is straightforward,

especially if these techniques (or “patterns”) are

captured by frameworks available in the form of

generic packages.

There are several alternative approaches that

one may choose from, depending on specific require-

ments; these approaches all remain safely within

the context of Ada’s strong typing.

A generalization of the self-referential technique

presented in [6] leads to a clean concept and imple-

mentation of multiple classification. This is

achieved through the disciplined composition and

application of self-referential types, not with multi-

ple inheritance.

7. ACKNOWLEDGMENTS

The author would like to thank Stéphane Bar-

bey, Gabriel Eckert, and Robb Nebbe for very help-

ful comments and discussions which helped improve

this paper.



www.manaraa.com

Heterogeneous Data Structures and Cross-Classification of Objects with Ada 95 Page 6

8. BIBLIOGRAPHY

1. Reference Manual for the Ada Programming Language. ANSI/
MIL-Std-1815a, 1983

2. Programming Language Ada: Language and Standard Librar-
ies. ISO/IEC 8652:1995. Ada 9X Mapping/Revision Team,
Intermetrics, Inc., 733 Concord Avenue, Cambridge, Massa-
chusetts 02138, MA, USA, January 1995. Also available at
URL
http://lglwww.epfl.ch/Ada/LRM/9X/rm9x/rm9x-toc.html

3. G. Bracha and W. Cook.Mixin-Based Inheritance. In Proceed-
ings of the OOPSLA/ECOOP’90 Conference, ed. by
N. Meyrowitz, Ottawa, Canada, 21-25 October, 1990, ACM
SIGPLAN 25(10):303-312

4. G. Eckert.Types, Classes and Collections in Object-Oriented
Analysis. In Proceedings of First International Conference on
Requirements Engineering, Colorado Springs, Colorado,
Apr. 18-22, 1994, IEEE Computer Society, pp. 32-39

5. A. Goldberg and D. Robson.Smalltalk-80: The Language and
its Implementation. Addison-Wesley 1983

6. M. Kempe.Abstract Data Types Are Under Full Control with
Ada 9X. In Proceedings of the TRI-Ada’94 Conference, ed. by
C. Engle Jr., Baltimore, Maryland, November 6-11, 1994,
pp. 141-152. Also available at URL
http://lglwww.epfl.ch/Ada/Resources/Papers/OO/
ADT_Control-revised.ps

7. M. Kempe. The Composition of Abstractions: Evolution of
Software Component Design with Ada 95.In Proceedings of
the TRI-Ada’95 Conference, ed. by C. Engle Jr., Anaheim, Cal-
ifornia, November 5-10, 1995. Also available at URL
http://lglwww.epfl.ch/Ada/Resources/Papers/OO/
Components-revised.ps


